USD 63.95 ЕВРО 71.13

Машинное обучение: 4 больших шага вперед в 2015 году

Аналитика

Простота использования, больше Big Data, множество новых библиотек и инструментов продвинули машинное обучение вперед в 2015 году.

До недавнего времени машинное обучение было в некотором смысле эзотерической материей, мало кто понимал алгоритмы и мог использовать большие данные в этой области. Но в последнее время алгоритмы стали более простыми в использовании, большие данные стали доступнее, и машинное обучение вышло из тени – в руки разработчиков и пользователей. Вот ключевые моменты в его развитии в 2015 году.

Машинное обучение стало более простым в использовании

«Проще» — это понятие относительное. По крайней мере, теперь требуется меньший объем работы для получения результатов. Инструментарий Sparkдля обработки больших данных стал доступен не только для тех, кто использует Java, и упростил машинное обучение. IBMочень активно изобретала себя заново как провайдера платформы, которая станет важнейшим катализатором машинного обучения.

Появилось множество библиотек для разработчиков машинного обучения

Несколько компаний-гигантов открыли свои библиотеки в области машинного обучения.Google предложил ресурс для внешних пользователей  TensorFlow, который ранее был его внутренним ресурсом. Microsoft вошелвигрус DMLT (Distributed Machine Learning Toolkit). Facebookоткрыл модули машинного обучения для Torchframework и схемы аппаратного обеспечения для машинного обучения.Amazonтоже предоставил свои инструменты для работы с большими данными, которые хранятся в AWS.

Большие данные для машинного обучения стали дешевле и проще

Машинное обучение изменилось благодаря взлету быстро обновляемых, доступных для использования и дешевого хранения больших данных. Например, Watsonи APIдля Интернета Вещей от IBM. В частности, IBMдоговорилась с провайдерами больших данных, таких как WeatherChannel, о расширении списка источников больших данных для использования в решениях в области машинного обучения.

Название «машинное обучение» стало всеобъемлющим

Поскольку технология бурно развивается, естественно, ее название применяется часто к тому, что к ней не имеет никакого отношения. К слишком широкому спектру процессов и стратегий. В частности, продукты в области информационной безопасности часто неоправданно эксплуатируют это название.